I have a really big post coming, but I’m driving to cleveland tonight and there’s no chance I’ll be able to finish it. So here is a little digression from the middle of it all that pretty much stands on its own. I hope to post the rest sometime this weekend.
Chad wondered: can we look at luck on individual plays or does it only make sense in aggregate? We discussed this over brunch for a while (our fiancé’s were thrilled), and I think the answer is yes, you can look at individual plays. In my original post, I didn’t specify what the odds were that the shortstop got to the ball, but in my head I was imagining a play that would be a hit maybe 90%-95% of the time. Now is that 5%-10% unlucky or just unlikely but inevitable? How about this play? That’s a home run 99.999% of the time, and I think we can all agree the guy who hit that was unlucky.
After a lot of thought, I realized that any cutoff is an arbitrary cutoff and in reality we should only be talking about degrees of luck rather than bucketing everything into categories. From a batter’s perspective, every hit is lucky and every out is unlucky. It’s a bit like win probability added insofar as every hit increases the chances of a win and every (nonproductive) out decreases the chances of a win.
A ball in play which is a hit 50% of the time that is turned into an out is unlucky, and that same ball when it is a hit is equally lucky. A ball which is a hit 99% of the time that actually results in a hit is lucky, but just a little tiny bit lucky. A ball which is a hit 99% of the time but is turned into an out is about as unlucky as you could be. getting 6 hits on 10 balls in play with an expected hit total of 3.6 is lucky, but not as lucky as getting 7 or 8 or 9 or 10 hits on those same balls; 5 hits in that situation is still somewhat lucky, but relatively less lucky than what actually happened. And if you’ve got a 30% chance of a ball in play turning into a hit and it does, that’s equivalently lucky to getting two hits on balls each with a 54.8% chance each of turning into hits or getting three hits on balls each with a 66.9% chance each of turning into hits (using the binomial distribution: 30% = 54.8% * 54.8% = 66.9% * 66.9% * 66.9%).